Prior Knowledge

Recall multiplication and division facts for multiplication tables up to 12×12

- Show that multiplication of 2 numbers can be done in any order (commutative) and division of 1 number by another cannot (Y2)
- Use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together 3 numbers (Y 4)
- Recognise and use factor pairs and commutativity in mental calculations (Y4)
- Multiply two-digit and three-digit numbers by a one-digit number using formal written layout (Y4)
- Solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by 1 digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects (Y3\&4)

multiplication and division		Working Towards	Within	Expected	Above
$\sum \stackrel{\circ}{\bullet}$	Identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers				
	Know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers				
	Establish whether a number up to 100 is prime and recall prime numbers up to 19				
	Multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers				
	Multiply and divide numbers mentally drawing upon known facts				
	Divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context				
	Multiply and divide whole numbers and those involving decimals by 10 , 100 and 1,000				
	Recognise and use square numbers and cube numbers, and the notation for squared (${ }^{2}$) and cubed (${ }^{3}$)				
	Solve problems involving multiplication and division, including using knowledge of factors and multiples, squares and cubes				
	Solve problems involving multiplication and division and a combination of these, including understanding the meaning of the equals sign				
	Solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates				

Highlights: \qquad
\qquad

vocabulary	word class	definition
multiplication	noun	the process of combining matrices, vectors, or other quantities to obtain their product
division	noun	the process of dividing a matrix, vector, or other quantity to obtain a quotient
calculating	verb	determine (the amount or number of something) mathematically
arrays	noun	an arrangement of quantities or symbols in rows and columns; a matrix
integer	noun	a number which is not a fraction; a whole number
factor pairs		a set of two integers that give a particular product when multiplied together
product	the answer when two or more values are multiplied together	
distributive law	multiplying a number by a group of numbers added together is the same as doing each multiplication separately	
common factor	noun	when the factors of two or more numbers are found, the factors that are the same are the common factors
prime number	noun	a number that is divisible only by itself and 1 (e.g. $2,3,5,7,11$) the prime factors of a positive integer are the prime numbers that divide that integer exactly
prime factor	noun	a whole number that can be made by multiplying other whole numbers. Example: 6 can be made by 2×3.
composite number	noun	the number which is left over in a division in which one quantity does not exactly divide another. Example: 23 divided by 3 is 7, remainder $2^{\prime \prime}$
remainder	adjective	relating to or denoting a system of numbers and arithmetic based on the number ten, tenth parts, and powers of ten.
decimal	the product of a number multiplied by itself, e.g. $1,4,9,16$	
square number	noun	the result when a number has been multiplied by itself twice. The symbol for cubed is 3 . Example: 8 is a cube number because it's $2 \times 2 \times 2$
cube number	noun	

Factors and Multiples

A multiple is a number
that can be divided
evenly by a
given number.
For example, $12 \times 1=12$, For example, $12 \div 1=12$,
A factor is a number that is multiplied by another number to get a product.
$12 \times 2=24,12 \times 3=36$
The multiples of 12
include: 12, 24, 36, 48...
$12 \div \mathbf{2}=6,12 \div 3=4$
The factors of 12 are: 1 , $2,3,4,6$ and 12.

Common Factors

A common factor is a number which is a factor of two or more other numbers. For example, 3 is a common factor of 6 and 9 .

Prime Numbers

A natural number greater than 1 with no divisors other than 1 and itself.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	30
81	82	83	84	85	86	87	88	89	90
91	92	93	9	95	96	97	98	99	100

Short Division

$15 \div 4=3$ remainder 3
Remember to regroup any remainders and move them into the next column.

$28 \div 5=5$ remainder 3

If your calculation has a remainder, remember to record it in the answer using the letter r.

Prime Factors

Prime factors are the factors of a number that are prime. They can be found using a diagram like this:

Square and Cube Numbers

$1^{2} 1 \times 1=1$	$1^{3} 1 \times 1 \times 1=1$
$2^{2} 2 \times 2=4$	$2^{3} 2 \times 2 \times 2=8$
$3^{2} 3 \times 3=9$	$3^{3} 3 \times 3 \times 3=27$
$4^{2} 4 \times 4=16$	$4^{3} 4 \times 4 \times 4=64$
$5^{2} 5 \times 5=25$	$5^{3} 5 \times 5 \times 5=125$
$6^{2} \mathbf{6 \times 6 = 3 6}$	$6^{3} 6 \times 6 \times 6=216$
$7^{2} 7 \times 7=49$	$7^{3} 7 \times 7 \times 7=343$
$8^{2} 8 \times 8=64$	$8^{3} 8 \times 8 \times 8=512$
$9^{2} 9 \times 9=81$	$9^{3} 9 \times 9 \times 9=729$
$10^{2} 10 \times 10-100$	$10^{3} 10 \times 10 \times 10-1000$
$11^{2} 11 \times 11-121$	$11^{3} 11 \times 11 \times 11-1331$
$12^{2} 12 \times 12=144$	$12^{\mathbf{3}} 12 \times 12 \times 12-1728$
4 -digit $\times 2$-digit	
carrying not shown	

5368

$\times \quad 24$ | Write the numbers above |
| ---: |
| each other in columns. |

$2543 \times 7=17801$

$2543 \times 67=170381$

Resources

\times	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
2	2	4	6	8	10	12	14	16	18	20
3	3	6	9	12	15	18	21	24	27	30
4	4	8	12	16	20	24	28	32	36	40
5	5	10	15	20	25	30	35	40	45	50
6	6	12	18	24	30	36	42	48	54	60
7	7	14	21	28	35	42	49	56	63	70
8	8	16	24	32	40	48	56	64	72	80
9	9	18	27	36	45	54	63	72	81	90
10	10	20	30	40	50	60	70	80	90	100

Future Learning

Year 6

Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication
0. Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
6. Divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context

- Perform mental calculations, including with mixed operations and large numbers
- Identify common factors, common multiples and prime numbers

0. Use their knowledge of the order of operations to carry out calculations involving the 4 operations Solve problems involving multiplication and division

- Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy

